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Recent interest in “electron-sufficient” [1,2] rearrangements of the Ste- 

vens’ ) 2 and Wittig 3 type has centred on the problem of their degree of concerted- 

ness. These rearrangements, which are formally symmetry-forbidden processes, are 

thought to occur (at least partly)2 via a non-concerted radical (cf. 2 and 1x) 

cleavage-recombination mechanism, 4 and this view is consonant, among other things, 

with the fact that optically active precursors generally lead to partially race- 

mised products. 4 

Here we report the stereochemical course of the [1,2] and [1,4] Wittig rear- 

rangement of S-ally1 a-phenylethyl ether 1. Unlike the [1,2] rearrangement, the 

concerted (and therefore stereospecific) [1,4] rearrangement is formally symme- 

try-allowed, 4 and it was of interest to see if this difference would show up as a 

lesser degree of racemisation in the [1,4] rearrangement product 2 compared to 

the [1,2] rearrangement products ,$. 

The ether A5 was mixed with excess butyl lithium in THF at -25’C, and the mix- 

ture of anionic products $ and 2 was treated as shown in Scheme 1. The alcohols 

$c, 2; and 2, which were formed in 60% overall yield and in a ratio of 16:20:64, 

were separated by chromatography. Their configurations and optical purities are 

shown in Scheme 1. 6,7,8 

All three products are formed with predominant retention of configuration, as 

expected, 4 and the extent of racemisation is similar (30 t 5%) for the [1,2] and 

[1,4] rearrangement products. This suggests very strongly that essentially all 

of the reaction, leading to both types of products, is occurring via the non- 

concerted radical mechanism 2-z. Such a mechanism is indeed required in the 

case of the cyclic allylic ether &, which cannot adopt the cisoid conformation 

necessary for a concerted [1,4] alkyl shift and which nevertheless affords appre- 

ciable amounts of the [1,4] rearrangement product 2. 9 

The Stevens rearrangement of the analogous optically active allylic ammonium 

salt 1; was studied some years ago by Jenny and Druey, lo who found that the [1,4] 

migration of the phenylethyl group is accompanied by considerable racemisation, 
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whereas the [1,2] rearrangement (the major process) is essentially stereospecific 

(see Scheme 2). This difference in the stereochemical course of the two reac- 

tions may be due to a difference in the configurations of the ions 2 and 11, and 

OBu Bu 0 

+ 

hence of the radical pairs 2 and W, as suggested in the Schemes. Allylic anions 

such as ,?, are well known 11 to prefer the cis configuration shown; this configu- 

ration leads to a radical pair 2 in which the migrating o-phenylethyl radical is 

situated somewhere near the middle of the allylic moiety. The result is approxi- 

mately equal amounts of [1,2] and [1,4] rearrangement products, and a similar de- 

gree of racemisation. The ammonium zwitterion in the Stevens rearrangement, on 

the other hand, is constrained, for steric reasons, 12 to adopt the trans confi- 

guration Q; this leads to a radical pair ,Jl in which the migrating radical is 

placed close to the carbon atom bearing the nitrogen, and remote from the termi- 

nal carbon. The result is a predominance of [I,21 over [I,41 rearrangement, 10 
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and a far greater extent of racemisation in the Cl,43 rearrangement product, whe- 

re the migrating radical has farther to go. 

One last point deserves mention. The reaction between the ether 1 and butyl 

lithium leads (after treatment as shown in Scheme 1) not only to the expected 

2 ?,- 

Me H 
OH Et 

products Q, and 5, but also, in about 9% yield, to the S-alcohol $i, aD -29.7O 

(neat, 1 = 1 dm). This alcohol must arise from the intermediate ,jj, which in 

turn must be formed from the allylic anion 2 via a cyclic transition state such 

as 13. A route via the radical pair z (recombination of the allylic moiety with 

the%zrtho position of the phenyl ring) is excluded since (a) none (< 0.5%) of 

the corresponding para isomer is formed and (b) the optical purity of the alcohol 

15 is at least 90%,13 

YT2). 

whereas the diastereoisomer ratio 4t/4~ is very low (about 

Such an unexpectedly high degree of transfer of chirality (> 90%) must im- 

ply an extremely "tight" transition state i3_. 
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