THE [1,21 AND [1,4] WITTIG REARRANGEMENT OF OPTICALLY ACTIVE ALLYL a-PHENYLETHYL ETHER

.
Hugh Felkin and Claude Frajerman Institut de Chimie des Substances Naturelles, C.N.R.S., **91190** Gif-sur-Yvette, France.

(Received in UK 12 July 1977; accepted for publication 8 August 1977)

Recent interest in "electron-sufficient" [1,2] rearrangements of the Stevens^{1,2} and Wittig³ type has centred on the problem of their degree of concertedness. These rearrangements, which are formally symmetry-forbidden processes, are thought to occur (at least partly)² via a non-concerted radical (cf. ζ and ζ) cleavage-recombination mechanism, $\frac{4}{1}$ and this view is consonant, among other things, with the fact that optically active precursors generally lead to partially racemised products. 4

Here we report the stereochemical course of the [1,2] and [1,4] Wittig rearrangement of S -allyl α -phenylethyl ether 1. Unlike the [1,2] rearrangement, the concerted (and therefore stereospecific) [1,4] rearrangement is formally symmetry-allowed,⁴ and it was of interest to see if this difference would show up as a lesser degree of racemisation in the $[1,4]$ rearrangement product \S compared to the $[1,2]$ rearrangement products 4 .

The ether 1^5 was mixed with excess butyl lithium in THF at -25°C, and the mixture of anionic products A and \S was treated as shown in Scheme 1. The alcohols $6e$, $6t$ and 7 , which were formed in 60% overall yield and in a ratio of 16:20:64, were separated by chromatography. Their configurations and optical purities are shown in Scheme $1.6,7,8$

All three products are formed with predominant retention of configuration, as expected,⁴ and the extent of racemisation is similar (30^{\pm} 5%) for the [1,2] and [1,4] rearrangement products. This suggests very strongly that essentially all of the reaction, leading to both types of products, is occurring via the nonconcerted radical mechanism $2 \rightarrow 3$. Such a mechanism is indeed required in the case of the cyclic allylic ether 8, which cannot adopt the cisoid conformation necessary for a concerted [1,4] alkyl shift and which nevertheless affords appreciable amounts of the [1,4] rearrangement product 9.9

The Stevens rearrangement of the analogous optically active allylic ammonium salt 10 was studied some years ago by Jenny and Druey, 10 who found that the [1,4] migration of the phenylethyl group is accompanied by considerable racemisation,

Scheme 1 (Optical purities are shown in parentheses)

whereas the [1,2] rearrangement (the major process) is essentially stereospecific (see Scheme 2). This difference in the stereochemical course of the two reactions may be due to a difference in the configurations of the ions 2 and 11 , and

hence of the radical pairs 3 and 12, as suggested in the Schemes. Allylic anions such as χ are well known¹¹ to prefer the cis configuration shown; this configuration leads to a radical pair $\frac{1}{2}$ in which the migrating α -phenylethyl radical is situated somewhere near the middle of the allylic moiety. The result is approximately equal amounts of [1,2] and [1,4] rearrangement products, and a similar degree of racemisation. The ammonium zwitterion in the Stevens rearrangement, on the other hand, is constrained, for steric reasons, 12 to adopt the <u>trans</u> configuration 1.1 ; this leads to a radical pair 1.2 in which the migrating radical is placed close to the carbon atom bearing the nitrogen, and remote from the terminal carbon. The result is a predominance of $[1,2]$ over $[1,4]$ rearrangement, 10

Scheme 2 (Optical purities are shown in parentheses) 10

and a far greater extent of racemisation in the $[1,4]$ rearrangement product, where the migrating radical has farther to go.

One last point deserves mention. The reaction between the ether 1 and butyl lithium leads (after treatment as shown in Scheme 1) not only to the expected

products β and ζ , but also, in about 9% yield, to the S-alcohol 1ξ , $\alpha_{\rm n}^{25}$ -29.7° (neat, $1 = 1$ dm). This alcohol must arise from the intermediate 14 , which in turn must be formed from the allylic anion $2 \text{ via } a$ cyclic transition state such as $13.$ A route via the radical pair $\frac{3}{2}$ (recombination of the allylic moiety with the $ortho position of the phenyl ring) is excluded since (a) none ((0.5%) of$ </u> the corresponding para isomer is formed and (b) the optical purity of the alcohol 15 is at least 90%,'' whereas the diastereoisomer ratio $4t/4e$ is very low (about 1.2). Such an unexpectedly high degree of transfer of chirality (> 90%) must imply an extremely "tight" transition state 13.

References and footnotes

1. W.D.Ollis, M.Rey, I.O.Sutherland, and G.L.Closs, J.C.S.Chem.Comm., 543 (1975). 2. U.H.Dolling, G.L.Closs, A.H.Cohen, and W.D.Ollis, J.C.S.Chem.Comm.,545 (1975). 3. J.F.Garst and C.D.Smith, J.Amer.Chem.Soc., 98,. 1526 (1976). -

- 4. U.Schöllkopf, Angew.Chem.Int.Ed., 9, 763 (1970).
- 5. The ether 1, $\lceil \alpha \rceil_0^2$ -82.4° (c = 1, toluene), was prepared from optically pure S(-)-Ph-CHOH-Me, $\left[\alpha\right]_0^2$ -51.1° (c = 1.7, toluene), NaH and allyl bromide in DME. It was > 96% optically pure, since it was converted back to Ph-CHOH-Me, $\lceil \alpha \rceil_2$ -49.1° (c = 1.7, toluene), when treated with RhCl(PPh₇)₇ [E.J.Corey and J.W.Suggs, <u>J.Org.Chem</u>., 38, 3224 (1973)], followed by HgCl₂ and HgO [R. Gigg and C.D. Warren, J.Chem.Soc.(C), 1903 (1968)].
- 6. A reaction done with nBuLi and TMEDA in pentane (see ref. 9) gave very similar results as regards both optical purities and yields.
- 7. The ether 1 could be recovered with unchanged rotation after 40% reaction with nBuLi in THF.
- 8. The optical purities shown in Scheme 1 are based upon the following maximum rotations: 6.6 , $\alpha_{\rm D}^2$ + 7.34° (neat, 1 = 1 dm), and 6.1 , $\alpha_{\rm D}^2$ -11.4° (neat, 1 = 1 dm) [D.J.Cram, <u>J.Amer.Chem.Soc., 74</u>, 2159 (1952)]; *l*, $\alpha_{\sf n}^{\rm s,2}$ -19.4 $^{\rm o}$ (neat, $1 = 1$ dm), $\lceil \alpha \rceil_0^2$ -20.2° (c = 4.8, ethanol). The values for ζ are slightly higher than those found previously: α_D^2 -18.2° (neat, 1 = 1 dm) [P.A.Levene and R.E.Marker, J.Biol.Chem., 110, 329 (1935)] and [α] $_{\alpha}^{2}$ -14.2° (c = 4.6, ethanol) [Y.Senda and S.Mitsui, Nippon Kagaku Zasshi, 86, 229 (1965); Chem. Abstr., 63, 4134 (1965)]. They are based upon the rotations of an 83% optically pure sample of 7 prepared (via Arndt-Eistert chain lengthening and subsequent LiAlH, reduction) from 3-phenyl butyric acid, $\alpha_{\rm h}^2$ -47.2° (neat, 1 = 1 dm) and [α] $_{\alpha}^{2}$ -48.1° (c = 3, benzene): optically pure 3-phenyl butyric acid has α_0^2 -56.5° (neat, 1 = 1 dm) and $[\alpha]_{0}^{2}$ -58.5° (c = 3, benzene) [D.J.Cram, J.Amer.Chem.Soc., 74, 2137 (1952)l.
- 9. H. Felkin and A.Tambuté, Tetrahedron Letters, 821 (1969).
- 10. E.F.Jenny and J.Druey, Angew.Chem., 74, 152 (1962).
- **11. See,** inter al., C.D.Broaddus, J.Amer.Chem.Soc., 87, 3706 (1965).
- 12. Compare the positions of the equilibria: $R = x^2$, cis/trans R \sim 50 when R = Me, and <u>trans/cis</u> \sim 4 when R = tBu [A.Schriesheim and C.A. Rowe, Tetrahedron Letters, 405 (1962)].
- 13. The optical purity of 15 was found to be 94 \pm 4% using the chiral shift reagent Eu(dcm)₃ [M.D.McCreary, D.W.Lewis, D.L.Wernick and G.M.Whitesides, J. Amer.Chem.Soc., 96, 1038 (1974)]. The absolute configuration (S), and also the optical purity (85.3 \pm 4.3%), were very kindly determined for us by A. Schoofs and A.Horeau on a 20 mg sample using their ingenious new (but as **yet** unpublished) enantioselective esterification method.